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Figure 1: VOR Depth Estimation is a novel technique enabling disambiguation of gaze targets in 3D environments. Ambiguity
arises due to gaze imprecision when objects overlap in the field of view (a), as a result of their placement in 3D (b). This can be
resolved when users complete the selection with a head rotation while maintaining gaze focus based on the vestibulo-ocular
reflex (VOR), allowing target depth to be obtained from comparison of the angular velocities of eye and head.

ABSTRACT
Target disambiguation is a common problem in gaze inter-
faces, as eye tracking has accuracy and precision limitations.
In 3D environments this is compounded by objects overlap-
ping in the field of view, as a result of their positioning at dif-
ferent depth with partial occlusion. We introduce VOR depth
estimation, a method based on the vestibulo-ocular reflex of
the eyes in compensation of head movement, and explore
its application to resolve target ambiguity. The method esti-
mates gaze depth by comparing the rotations of the eye and
the head when the users look at a target and deliberately
rotate their head. We show that VOR eye movement presents
an alternative to vergence for gaze depth estimation, that is
feasible also with monocular tracking. In an evaluation of
its use for target disambiguation, our method outperforms
vergence for targets presented at greater depth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300842

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI); Gestural input; • Computing method-
ologies→ Virtual reality;

KEYWORDS
Vestibulo-ocular reflex, depth estimation, eye tracking, ver-
gence, disambiguation
ACM Reference Format:
Diako Mardanbegi, Tobias Langlotz, and Hans Gellersen. 2019. Re-
solving Target Ambiguity in 3D Gaze Interaction through VOR
Depth Estimation. In CHI Conference on Human Factors in Comput-
ing Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland
UK. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3290605.3300842

1 INTRODUCTION
Eye tracking is compelling for interaction as it is natural
for users to direct their gaze to point at targets of interest.
However, gaze pointing has inherent limitations in accuracy
and precision, as eye movement is jittery and gaze estimation
subject to noise and imperfect calibration [20, 36]. In 2D
interfaces, this can be managed by spacing of objects and
targeting assistance. In contrast, in 3D interfaces, objects
can be placed at different depth and depending on viewpoint
appear as overlapping in the field of view, resulting in target
ambiguity. Figure 1.a&b illustrate the problem. While a user
is looking at object B, they might inadvertently select object
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A as it is close to the line-of-sight and partially occludes
B. Ambiguity as to which of the two objects the user is
looking at can be resolved with estimation of gaze depth,
for comparison against the depth at which the objects are
rendered.

In this paper, we introduce VOR depth estimation as a novel
method for 3D gaze estimation that can be used to resolve
target ambiguity in 3D interfaces (stereoscopic displays, or
VR/AR environments). In our technique, users select an ob-
ject by focusing their gaze on the target while deliberately
shaking their head, as illustrated in Figure 1.c. The head
movement is compensated by eye movement in the oppos-
ing direction, based on the rotational vestibulo-ocular reflex
(VOR) that stabilizes the retinal image during movement of
the head. The technique takes advantage of the additional
sensors available in head-mounted displays (e.g., VR/AR de-
vices), for precise tracking of head motion. It does not track
gaze depth continuously but relies on head movement to trig-
ger depth estimation. As it is based on relative eye movement,
it is not reliant on accurate calibration.
Our contribution starts with developing the theoretical

foundation of VOR depth estimation. We then report a feasi-
bility study in which we empirically evaluate depth estima-
tion performance of our technique on data collected from
4 participants, indicating advantages over vergence for es-
timation at greater depth. This is followed by evaluation of
the technique in application to the target disambiguation
problem in a user study. Users were presented with pairs of
targets rendered at different depth and depth estimation was
done in real-time using our technique. Selection accuracy
was comparable with vergence for targets presented within
2m of the user, but superior for targets presented at larger
distances.

In sum, the contributions of this work are:

• A novel technique for gaze depth estimation based on
VOR eye movements.

• Evaluation of depth estimation performance in com-
parison with a vergence-based method.

• Demonstration and evaluation of the technique for
target disambiguation in virtual reality.

2 RELATEDWORK
There has been a body of research addressing the accuracy
and precision issues of gaze-based interaction. In particular,
the resulting problems when several possible gaze targets
are in close proximity, have been addressed for conventional
2D user interfaces [6, 13, 16, 39].
Similarly, gaze-based interaction has been utilized in 3D

user interfaces. Here, in addition to target proximity, oc-
clusions resulting from target objects (partially) occluding

each other have been identified as challenges and are dis-
cussed when pointing is done by gaze [8] or another modality
[12, 24, 37]. The majority of these works require changes
in the UI (e.g., enlarging and magnifying the UI) or a re-
arrangement of the coarsely selected target candidates for
final selection.

Some other solutions opted for combining head and hand
for improving general interaction or to use head and hand to
improve otherwise imprecise target selection with gaze [4,
5, 26, 38]. These non-depth based alternatives rely on visual
feedback to the user upon which they can act to refine their
input in an additional step. A specific example is Pinpointing
(Kyto et al. 2018), where the user first looks and signals intent
to select (press button, or dwell), then in second step corrects
input by head and confirms (release button). In contrast,
our approach permits selection in one step: user looks and
shakes head to signal intent to select, and the disambiguation
is achieved implicitly based on the head-shake, without any
further interaction step.

In this work, we explore a different strategy for overcom-
ing precision and occlusion issues in gaze interaction for
3D environments which infers the gaze depth from the eye
and head tracking data. When looking into existing 3D gaze
estimation methods that utilized the computed depth of the
gaze, we identify three primary methods:

Gaze ray-casting methods. Techniques in this category
are based on ray-casting a single gaze ray with the 3D scene
where the intersection of the first object and the gaze ray is
taken as the 3D point of regard [27, 40]. The gaze ray could
either be the visual axis of the left eye or the right eye or
an average gaze ray shot from an imaginary cyclopean eye
situated midway between the two eyes 1. These techniques
are only possible if the gaze ray directly intersects an object
and they also do not address the occlusion ambiguity when
several objects are intersecting the gaze ray.

Intersection of multiple gaze rays. These techniques
apply gaze estimation in 3D by intersecting multiple gaze
rays either the rays from the left and the right eyes [10, 18] or
the gaze ray of a single eye sampled at two different viewing
angles [30]. These techniques do not rely on intersection
with 3D geometries and estimate the gaze point in 3D only
based on information from the observer.

Vergence. These techniques obtain the 3D gaze point
via triangulation using either horizontal disparity between
the left and the right 2D gaze points [1, 7, 9, 11, 33] or the
inter-pupillary distance [2, 15, 22, 25]. Others have also used
machine learning techniques to estimate gaze depth from
vergence [32, 42]. Weier et al. [43] introduced a combined
method for depth estimation where vergence measures are

1The average ray is referred to as "Combined Gaze" in Tobii Pro SDK of the
VR Integration [19]
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combined with other depth measures (such as depth obtained
from ray casting) into feature sets to train a regression model
to deliver improved depth estimates.

These primarymethods for computing gaze depth informa-
tion for interaction in 3D are all based on the rays described
by the users gaze, optionally combined with the scene geom-
etry. However, some research also looked into other means
to compute the gaze depth. For example, Alt et al. [1] uses
pupil diameter to infer the depth of the gazed target when in-
teraction with stereoscopic content. This technique is based
on the assumption that the pupil diameter changes as a func-
tion of target distance given that lighting conditions remain
constant [35]. Mercier et al. [29] used autorefractors to infer
the gaze depth by measuring the eye’s accommodative state.
Common to these techniques is that the required information
can also be inferred from the information obtained from a
single eye only.
In this paper, we propose an alternative method for gaze

depth estimation which is based on the coupling between
head and eye movements, more specifically utilizing the
vestibulo-ocular reflex (VOR). The relationship between head,
eye (their VOR gain) and specific target depths have been
studied before (e.g. [3, 41]), however, to our knowledge, it has
never been used for depth estimation. In our technique, we
use eye tracking data in combination with the information
obtained from additional sensors for target selection. Others
have also utilized the additional tracking sensors available
on commercial head-mounted displays for enhancing 3D
gaze estimation [21, 23, 26].

3 VOR DEPTH ESTIMATION
Eye-head coordination is a complex topic that is extensively
studied not only in Cognitive Science but also for Human-
Computer Interaction. In this work, we are particularly inter-
ested in exploring the eye-head coordination to resolve ambi-
guity in gaze interaction. The proposed technique addresses
the ambiguity due to occlusion by inferring the depth of the
gazed target after a deliberate head movement performed
by the user (as illustrated in Figure 1b&c). The underlying
assumption of this method is that the users keep their gaze
fixed on the target during head movements, however, the
eyes move because of the vestibulo-ocular reflex (VOR).
During VOR eye movements, the head and the eyeball

could be considered as two coupled counter-rotating objects
in 3D where both rotate together but in opposite directions.
The gain of the VOR eye movement is defined as angular eye
velocity divided by angular head velocity (hereafter referred
to as VG which stands for VOR gain),

VG =
dθE
dθH
. (1)

Figure 2: Basic geometry (top-view) of two eyes fixating on a
point G, when the head is rotated to the right by θH degrees
while the gaze is fixed on the pointG. The large dashed circle
shows the locus of eyeball centers during head rotations.

Where θE and θH are rotations of the eye and the head re-
spectively. The VG is ideally 1, however, since the center of
the eyeball does not coincide with the center of rotation of
the head (O), the eye and the head do not rotate the same
amount. The offsets between the center of rotation of the
eye and the head are shown as x and y in Figure 2. Because
of the offset, and the fact that the eyes are carried by the
head during head movements, θE and θH vary by a small
amount ε where θE = θH + ε . The ε represents the amount
that the gaze direction дr rotates in space during VOR even
though the fixation point is fixed. Keeping the θH angle fixed,
ε changes as a function of depth (D), where ε increases as the
fixation point G gets closer thus increasing the gain value.
Based on this we can conclude that the angular velocity of
the eye during VOR is higher than the angular velocity of
the head at closer distances simply because the eye has to
rotate a larger angle.
From the geometry shown in Figure 2, one can also see

that ε is also dependent on the head angle θH (as mentioned
in previous works [41]). Because of this, it’s desired that the
VOR gain is always obtained at a specific θH meaning that
the specific θH value used in the calculation has to be cov-
ered by the head movement. We take this into account when
evaluating the depth estimation performance, however, as
we describe later, when evaluating the disambiguation per-
formance, we did not constrain the head movements and the
VG samples were taken at an angle where the head velocity
was maximum.

4 DEPTH ESTIMATION PERFORMANCE
In a first step we were interested in the general feasibility
of utilizing the VOR gain to compute depth information
that can later be used to reduce ambiguity in gaze based
selection. We also explore if and how depth information can
be obtained from the VOR gain of a single eye. To test the
feasibility of our concept, we implemented it in a controlled
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virtual 3D environment where we could easily position the
fixation targets at different distances and different angles.
More importantly, we could accurately measure the head
and the eye rotations. In our experiment, we wanted to study
the relationship between VOR gain and target depth and
for that we recorded the eye and the head movements of a
few subjects when they were looking at targets at different
depths and shaking their head.We alsomeasured the distance
between the pupil positions of the left and the right eyes to
compare how VOR gain and inter-pupillary distance change
across different depths.

Setup & Apparatus
AnHTCVive virtual reality setup with integrated eye tracker
from Tobii [19] was used to collect eye and head movement
data. The program used for the experiment was developed
in Unity engine. Both eye and head data were synchronized
by the Tobii SDK and they were both collected at 120Hz.

Participants
We recruited 4 participants (3 male and 1 female, with the
average age 32 (SD=3.8)) to take part in the experiment.

Procedure
The participants were sat on a chair in a comfortable posture
while the head was facing straight ahead. They were asked
to put on the VR headset and adjust the straps for comfort.
Before each recording, the participants conducted a gaze
calibration with 5 points using the default Tobii calibration
procedure. The main task was to fixate on a target and to
move the head 10 times left to right and vice-versa continu-
ously in the transverse plane. The fixation target was placed
at different distances from 20 cm to up to 1000 cm (measured
from the center of the headset). The target was a white color
circle with a cross at its center. To help the participants to
keep their head aligned with the target before starting head
movements, a cross indicated by two thin lines was shown in
front of their view at the same depth as the target and they
were instructed to keep the center of the cross aligned with
the center of the target at the beginning of each trail. Partic-
ipants were also asked to keep their gaze fixed at the center
of the target at all time. At the beginning of the recording the
target was placed at 70 cm depth and then it moved closer
and stopped at the first distance (20 cm). This converge-
assist step with 6 sec duration was meant to help the users
to converge their eyes at such a close distance which would
otherwise be very difficult for some people. The target then
became green indicating that the head movement can be
started. To ensure that the head movements are done in the
transverse plane, the participants were instructed to try to
keep the horizontal line of the cross aligned with the target

during the movement. The head rotation was limited to ±20◦
of each side and the target became red as soon as the head
angle exceeds this angle indicating to the participant that
they should stop the movement and reverse the direction. A
tick-tack sound was playing in the background guiding the
participants to adjust the speed of the movement by align-
ing the tick-tack sounds with extreme right and left angles.
The desired speed for the head shake was set to 50◦/sec
(0.4◦/f rame). This value was decided empirically during a
pilot experiment when we tested 4 different speeds (30,40,50,
and 60)[◦/sec] where 50◦/sec yielded smoother side-to-side
head movements and it was not too fast for the users.

We asked the users to do 10 head movements. After count-
ing 10 movements, the target became white indicating that
the user can stop the movement. The target then moved to
the next distance (4 second transition). After the last distance,
there was a far-to-close stepwhere the target moved closer
all the way to 20 cm and the participant was asked to fixate
on the target while aligning their head with the target. We
used this step to measure the interpupillary distance as an
indication of vergence angle at different distances. Except
for the first and the last steps of the recording, the target size
was kept constant at 2◦ of visual angle at all distances.

Implementation & Data Processing
To be able to calculate the VG in our study we recorded the
following main values: target distance, pupil positions, head
orientation (roll-yaw-pitch angles) and both gaze rays.

We applied a 3rd order Butterworth filter with the Cutoff-
frequency of 0.04 on all raw inputs from head and eye to
smooth the signals. Figure 3.a and 3.b show the raw and
the filtered eye and head rotation signals for 3 horizontal
head movements of 40◦ from left to right or vice-versa whilst
the user was looking at a target located straight in front
of the head. A Savitzky-Golay [14] filter using a 3rd order
polynomial and a window size of 100 was then used to differ-
entiate the rotation signals and produce velocity. No further
filtering was done on the velocity signals. Figure 3.c shows
example velocity signals corresponding to the head and eye
signals shown in the figure. The blue segments shown on
the signals indicate the time where the target was within
±5◦ angular distance from the head straight vector. The VG
value was then calculated by dividing the eye velocity by the
head velocity.
We used the raw pupil position data recorded during the

far-to-close step of the recording to measure a relative in-
terpupillary distance. The pupil position data obtained from
the Tobii SDK are normalized pupil position in the sensor
area where (0, 0) is the top left and (1, 1) is the bottom right
of sensor area. We subtracted the horizontal values of pupil
positions of the right eye and the left eye to get a signal that
can show how the interpupillary distance has changed for

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 612 Page 4



−20

0

20

40

d
eg

(a)

θE

raw signal

filtered signal

−20

−10

0

10

20

d
eg

(b)

θH

raw signal

filtered signal

1500 1550 1600 1650 1700 1750

frame

0

50

100

150

200

d
eg

/
se

c

(c)

θE vel

θH vel

Figure 3: The raw and the filtered signals of eye (a) and head
(b) rotations of 3 headmovements for a random subject with
the target 0.3 m away from the head. Figure (c) shows the
corresponding velocity signals. The blue segments indicate
the region where the angle between the target, point O , and
the head vector was within ±5◦.

different fixation distances. We refer to this signal as the IPD
signal for the rest of the paper even though it’s not an actual
measurement of the IPD. Because the data was captured in
high frame rate, there were occasions were we had multiple
values per depth which we then took the median value. To
remove spikes and noise from this signal, we first removed
the outlier samples by calculating the rolling median signal
with a window size of 50 and then removing any sample that
its distance from the median was larger than a threshold. The
values for the window size and the threshold were found
through trial and error and they worked best on our data.

Results
We calculated the gain by dividing the eye velocity by the
head velocity. This value gets very unstable for the velocity
signals close to zero. We collected the VG for a particular
head angle θH = 0 where the velocity signals have their high-
est values. We also included a window size of ±5◦ around
this point and took their median VG value at each head
movement. There were 10 movement strokes for each dis-
tance and thus 10 VG values per distance. Values outside
the interquartile range were considered as outliers and were
removed. The median of the remaining VG values was taken
as the final VG value at every distance. In order to be able
to compare the VG values between subjects, we normalized
the VG curve for each subject by mapping the VG values
into the range [0,1] where 0 corresponds to the VG value at
D=1000 cm and 1 corresponds to the VG value at D=20 cm

as measured for each individual subject. Figure 4.a shows
the VG ratio obtained at each depth from the right eye of all
participants.
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Figure 4: Normalized VG (a) and VGP (b) curves obtained
from all participants. All individual samples (collected from
both eyes) are shown in gray color. The green and the blue
curves show the median of samples (across all participants)
for right eye and left eye respectively. The IPD signal ob-
tained during the far-to-close step is also shown in red.

We found the pupil data obtained from the tracker less
noisier than the gaze data. This prompted us to check the
feasibility of using pupil data instead of gaze data which
could also make the proposed method independent from
gaze calibration. Thus, we defined VGP (VOR gain using
pupil position) as the velocity of the pupil position (in the
eye image) divided by angular head velocity:

VGP =
dPC

dθH
(2)

where PC is the center of pupil in the eye image.
The results showed that the VGP values obtained from

the pupil center data give us smoother curves (see Figure 4).
We collected the IPD signals obtained during the far-to-

close step for all participants. Figure 4 shows the median
of the normalized IPD signals from all participants as well
as the median VG and VGP curves. The IPD signals were
normalized the same way as the VG, where 0 corresponds to
D=1000 cm and 1 corresponds to D=20 cm. By comparing the
IPD curves with the VG and VGP curves, we can see that the
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relationship between the VOR gain and depth is very similar
to the relationship between the vergence and distance. The
resolution (defined as the amount of change in the measured
value per unit distance) of our method seems to be slightly
higher than the IPD signal at distances greater than 1 m. This
can indicate that the VOR based method may perform better
at larger distances when used for depth estimation, however,
this difference could also be due to noise in calculating the
VOR gain.

Depth Estimation
We found the rational function shown in Eq.3 to best describe
the vergence and VG curves.

S(D) = D2P0 + DP1
D2P2 + DP3 + P4

(3)

Where D is the fixation depth. We used the inverse of S(D)
(Eq.4) to estimate the target depth from the VG or the ver-
gence values in the following.

D(S) =

−SP3 + P1 +
√
−4S2P2P4 + S2P 2

3 + 4SP0P4 − 2SP1P3 + P 2
1

2 (SP2 − P0)

(4)

Where S could be either vergence or VG values measured at
depth D.

5 EVALUATION OF TARGET DISAMBIGUATION
We further conducted a user study to see the feasibility of
using our technique for disambiguation in a VR selection
task. We combined our technique with head gestures as a
method for object selection. Our assumption, however, was
that the user’s gaze remains fixed on the target when the
selection is confirmed by deliberate head shakes. We refer
to this task as gaze & head-shake selection task or in short
as gaze & head-shake.

We were further interested in exploring whether the pro-
posed method can implicitly disambiguate the target using
only the natural head shifts that follow gaze shifts when
aiming at a new target. Thus, besides the gaze&head-shake
selection task, we asked the participants to do another task
where they selected the target just by looking at it without
the need for doing any explicit head shakes. We later checked
the performance of our method in this task where the VOR
gain was obtained only during natural head shifts. Another
aim for this task was to mimic ideal gaze selection where the
main target was always selected 2 seconds after they shift
their gaze towards the target even when the gaze was hitting
the other target. We later consider the users’ perceived task
load of the ideal gaze selection as a baseline for comparison.
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Figure 5: The top figure shows the two different arrange-
ments for target depth used in the user study: short-range
and wide range. The gray regions around each depth indi-
cate the acceptable range for estimated depth for each target
depth. For example, in the short-range condition, the target
at 0.8 m will get selected if the estimated depth is between
0.65 m and 2 m. The targets were also tested at different an-
gular offsets from the central direction (as shown in the bot-
tom figure).

Study Design
In our study addressing target ambiguity in 3D environments
the participants had to select one of two displayed targets
(target ’A’ and target ’B’), each located at a different depth
with the distant target partially occluded by the closer tar-
get. One of the targets was considered as the main target
which had to be selected. Given the range of possible target
distances, we applied the following criteria to selecting th
distance. We considered two common conditions that could
happen when interacting with 3D environments: A short-
range condition of 20 cm to 1 meter which is within reach.
Most of the manual manipulations take place in this space.
Secondly, a wide-range condition where the occluded target
is usually a background object farther away from the user.
In each condition, we considered 3 different depths ([0.3 m,
0.5 m, 0.8 m] for the short-range condition and [0.5 m, 1.5
m, 7 m] for the wide-range condition as shown in Figure 5).
In each condition, we considered all 2 permutations of the
3 distances leading to 12 combinations of distances 6 from
each condition.

We also considered different angular offsets. The two tar-
gets were positioned along a ray starting from the center
of the head and we considered 9 angular offsets (0◦, ±10◦,
±25◦, ±35◦, ±45◦) for this ray to test different positions at
the user’s field of view. We excluded the 0◦ angle as it does
not require any head shift. Overall, we had 12 (depth pairs)
× 9 (angles)=108 trials in the gaze & head-shake task and
12 (depth pairs) × 8 (angles)=96 trials in the ideal gaze task.
The depth and angle conditions were ordered randomly. To
avoid distant targets to appear as very small, we kept the
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size of the targets constant (1.5◦ of visual angle) regardless
of their distance.

For this study, we compared ourmethod against a vergence-
based method. However, we tested three different modes of
our depth estimation method: depth obtained from the VOR
gain of the left eye (VGPL), the right eye (VGPR ), and the
final mode using the average distance obtained from both
eyes (VGPAV ). Our user study was conducted as a within-
subject study with 4 methods comprised of the 3 modes of
our implementation and a vergence-based method. Overall,
we have 4 (methods)× 2 (depth conditions)× 5 (angular offset
conditions) full factorial design for the gaze & head-shake
task and 4 (methods)× 2 (depth conditions)× 4 (angular offset
conditions) in the ideal gaze task.
The gray region around each depth in Figure 5 indicates

the acceptable deviation that the estimated depth could have
from the target depth. From the result of the experiment
(Figure 5), we already expected to have larger errors for more
distant targets. Therefore, the acceptable range of distances
was set to be smaller for closer targets than for distant targets.
The acceptable regions around targets were also set to be
smaller for the short-range scene as the selection required
higher accuracy for depth estimation. In the wide-range
scene, we accepted larger depth estimation errors as the
targets were farther apart. The acceptable value for depth
was set to 10 m because the farthest sample during our depth
calibration was taken at 10 m and no extrapolation was done
for depth estimation (depth estimation method is described
further in the following).

Participants
We recruited 13 participants (11 male and 2 female, mean
age=29.38 (SD=5.9)) to take part in the user study. 6 of the
participants were right eye dominant, 5 were left eye domi-
nant and 2 did not answer the question because they were
unsure. Besides 2 participants, all the others had tried virtual
reality before. 6 participants used glasses or contact lenses in
the study. The software crashed in the middle of recording
for one of the subjects and he did not want to continue. Also,
the depth calibration failed for one of the participants (thus
no model was detected for depth estimation) and we couldn’t
run the selection task for that subject. We excluded the data
from these 2 participants.

Procedure
Our user study was divided into two parts. First, the ideal
gaze task followed by the gaze & head-shake task. The order
of the tasks was not counterbalanced as performing the gaze
& head-shake task first may have influenced the participants’
perception on what type of headmovement was required and
we had no intention to compare the tasks. After providing
consent and demographic information, we used the same

procedure from the previous study to collect 18 samples
at different depths for building the model used for depth
estimation. We refer to this step as depth calibration in the
rest of the paper. Right after the depth calibration step the
participants had the chance to do 10 test trials to practice
the condition.

Ideal gaze selection. In each trial, two targetswere shown
to the user and it was indicated which of the targets has to
be selected. Selecting the main target is simply by shifting
the gaze towards the target. We provided feedback for con-
firmation that was not based on our disambiguation method,
but always selected the main target correctly after 2 seconds
from the moment where the distance between the gaze and
the target goes below the threshold of 3◦. We checked the
true performance after offline analysis. After each selection,
the user was guided back to the neutral position.

Gaze & head-shake selection Similarly to the first part,
in each trial, two targets were shown to the user and it was in-
dicated which of the targets has to be selected. Selecting the
main target is by looking at it and shaking the head until the
depth estimation is done and selection is confirmed. The num-
ber of head shakes was not fixed and selection was always
done after 50 samples are collected at head velocities higher
than 50◦/sec . This value was decided empirically based on
the data collected during the pilot experiment, which was
equivalent to 40◦ head movement from side to side. It is pos-
sible to perform the selection with only one head movement
but typically more than two head movements were required
to confirm the selection.

Similar to the ideal gaze task, the participants had to move
their head back to the neutral position before the next trial.
The participants completed a questionnaire at the end of
each session, which contained questions and comments on
their general preference.

Figure 6: (a) A screenshot of the user’s view, and (b) top view
showing the two targets, left and right gaze rays focusing on
the closer target and head direction (cyan line).

Data Processing
Based on our findings from our initial experiment, we used
pupil data for calculating the VG values (VGP ) in our user
study. we used the function described in Eq. 3 to fit ourVGP
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Figure 7: Percentage of successful selection in the gaze &
head-shake selection task.

samples collected from the depth calibration step. The model
was built for each individual immediately after the depth
calibration step. We then used Eq.4 to estimate the target
depth from the median VGP value measured in each trial.

In each trial, theVGP was calculated in realtime separately
for each eye whenever the head velocity was higher than
50◦/s (0.4◦/f rame). The fixation depth was then calculated
separately from VGP of each of the eyes. The average of
the two estimated depths was taken as the final depth. We
selected the target if the estimated depth was within the ac-
ceptance range of target (see Figure 5). We provided feedback
to the user by drawing the selected target in green. Realtime
depth estimation was also done using IPD signal as well as
VGP of each single eye and they were all logged into one
file for further comparisons.

Results
For each participant, we counted the number of trials where
themain target was selected correctly based on the depth esti-
mation using any of the four methods (VGPAV ,VGPL ,VGPR ,
and Verдence). We performed a three-way repeated mea-
sures ANOVA to compare the success rate of different meth-
ods for two different depth conditions (short-range scene &
wide-range scene) at different angular offsets.

The average selection time with our technique was 0.56
sec (SD 0.37) which was measured from the beginning of
each trial to the moment where the selection was done. This

was the average time needed to take 50 samples at high head
velocities as described before.

Figure 7a shows the results comparing the proposed VOR-
based method and the vergence method in short-range and
wide-range scenes. Themean of the successful ratewas above
60% for the proposed method even when using a single eye
only.We found no significant main effect for method or depth
conditions. We observed significant two-way interactions
for method × depth condition (F (3, 30) = 17.22,p = .000).
Therefore, we further investigate the simple main effects
for the method using a one-way ANOVA. We found no sig-
nificant simple main effect for methods in the short-range
scene but in the wide-range scene, we found a significant
main effect for method (F (3, 30) = 8.01,p = .000) where the
success rate of the vergence method was 18% lower than
VGPAV .

Figure 7b shows the results comparing the proposed VOR-
based method and the vergence method across different an-
gular offsets. We found a significant main effect for angle
(F (4, 40) = 6.71,p = .000) where the mean of the selection
performance was significantly lower at 45◦ compared to 0◦
for all methods. We found no significant difference between
methods across different angular offsets.

Our results showed that except for the wide-range scene,
the performance of the VGPAV method was not necessarily
better than the methods using a single eye (VGPL or VGPR )
indicating that same level of accuracy can be achieved from
one eye only.
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Figure 8: Depth estimation error at different target depths
in the gaze & head-shake selection task.

Figure 8 shows the depth estimation errors of different
methods at each target depth. The result indicates that the
mean accuracy of the proposed method was lower at 7 m
compared to the vergence method. However, the vergence
method is more precise than our method.

6 SUBJECTIVE EVALUATION
We also did a qualitative evaluation to assess the usability
of our method as a selection technique particularly for the
gaze & head-shake selection. The feedback of the ideal gaze
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task served us here as a baseline as the ideal gaze task re-
quired only looking at the target for 1 second. The first two
questions covered the overall perceived physical demand
and tiredness (Figure 9). We can see that while the gaze &
head-shake selection is physically more demanding and tir-
ing than the ideal gaze task the majority of the participants
were not affected by it (only 27% of the participants found
the gaze & head-shake selection physically demanding while
only 18% of the participants thought the gaze & head-shake
selection was tiresome). The responses to the third question
show that some participants felt constrained in their head
movement by the weight and the bulk of the VR headset.
Those who responded negatively commented that they ex-
perienced difficulties to perform large head shakes when
the targets had high angular offsets. We also explored the
difficulty of focusing on the main targets when they were
partially occluded or when shown at very close distances.
Based on the answers and participants’ comments, we un-
derstood that a minority had problems focusing on partially
occluded targets. Two extra questions were specific to the
gaze & head-shake task. The answer to these questions show
that 45% of the participants found it difficult to deliberately
keep the gaze fixed on the target and move their head at the
same time as required for our study. This high percentage
could be a reason for the instability of the VG samples. Fi-
nally, the majority of participants found the technique easy
to learn.

Some of the participants later commented that the method
could have beenmore natural when using smaller headmove-
ments and here in particular small head nods. One of the
participants who had experiences in VR indicated that dis-
ambiguation using head movements seemed to be more con-
venient than moving hands or arms.

7 DISAMBIGUATION USING IMPLICIT HEAD
SHIFTS

We further explored the performance of the vergence and
VOR-based methods by analyzing the data recorded during
the ideal gaze task. The results showed that despite our expec-
tation, our method did not work properly using natural head
shifts that occur when looking at targets (Figure 10). Overall,
our VOR-basedmethods had significantly lower performance
than the vergence method (F (3, 30) = 38.37,p = .000). For
example, the mean selection rate for VGPAV was below 20%
in the short-range condition which was 53% lower than the
vergence method. The accuracy of the VOR-based methods
were below 10% at target offsets 10◦ and they performed
only 20% better for the angular offsets of 25◦ and higher. No
improvement was observed by increasing the angular offsets
from 25◦ to 45◦. The performance of the vergence method
did not change compared to the gaze & head-shake task. We
expect that the accuracy of the vergence method to be lower

The	task	was	physically	demanding.

Selection	task	was	tiring.

I	didn't	have	enough	freedom	to	move	my	head	around.

It	was	very	difficult	to	focus	my	eyes	on	some	of	the	targets.

It	was	very	difficult	to	keep	the	gaze	fixed	on	the	target	during	head	movements.

This	technique	was	difficult	to	learn.

Strongly	disagree Strongly	agree

Gaze	&	head-shake

Ideal	gaze

Gaze	&	head-shake

Ideal	gaze

Gaze	&	head-shake

Ideal	gaze

Gaze	&	head-shake

Ideal	gaze

Gaze	&	head-shake

Gaze	&	head-shake

Figure 9: Participants’ responses to the questionnaires.

at higher angular offsets if no head shifts is made towards
the target, however, we have not tested the effect of viewing
angle on the vergence method in our study.
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Figure 10: Percentage of successful selection in the ideal gaze
selection task.

The VGP samples in the ideal gaze task were taken during
the first head movement made towards the target. One thing
that we observed when looking at the data from the ideal
gaze task was that in many trials gaze shift or vergence were
still ongoing when the head velocity was at its maximum,
making only the last 1/3 of the head shifts usable for depth
estimation. As mentioned before, the VGP values were very
unstable at head velocities lower than 50◦/sec and there were
only a few frames during the last 1/3 of the head shifts where
the velocity was higher than that threshold even at extreme
angular offsets. This can explain the very low performance
for our method using implicit head shifts.

8 DISCUSSION
Our results show that our VOR depth estimation method can
achieve similar accuracy as a vergence-based methods when
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resolving target ambiguity in 3D gaze interaction, in partic-
ular for difficult cases where objects are close or partially
occluded. Our results show that the VOR depth estimation
even outperformed the vergence method in the wide-range
scene condition by 18%. Since our method requires head
movements for estimating gaze depth, we see in particu-
lar that it can be used in combination with other methods
that combine gaze and head movements for interaction (e.g.,
[28, 31]) when used in 3D. One application example could
be to resolve target ambiguity when continuous head move-
ments are used to adjust continuous parameters of different
objects in 3D (for example adjusting the volume of a TV that
is partially occluded by another device).

The average selection time in our gaze & head-shake study
was less than 600 ms which is comparable with 300-550 ms
dwell time used in VR (e.g., [17, 34]), taking into account that
dwell selection does not cope with the ambiguity problem.
We can view a head-shake as an effective signal of intent to
select, on which our VOR depth method piggy-backs at no
additional interaction cost.

It is also worth to mention that we implemented the VOR
depth estimation in VR, however, the principle is applicable
to many other scenarios including real world and Augmented
Reality. It can be used for depth estimation in head-mounted
eye trackers when depth information is needed not continu-
ously but on ad-hoc basis and beyond target disambiguation.
This includes cases where non-continuous eye tracking is
used to adapt the rendering of displays, e.g., for depth of
field rendering or for highlighting objects in cluttered scenes
and when hands-free is required. The latter has particular
relevance for maintenance tasks as often demonstrated in
Augmented Reality. Finally, we see a specific advantage of
our approach in the fact that only a single eye needs to be
tracked. This allows to estimate gaze depth in cases where
vergence-based methods do not work such as monocular
HMD designs similar to Google Glass.

Despite the theoretical potential of the VOR-basedmethod,
the results from our user study and the VG curves obtained
from the depth calibration steps also showed that the pro-
posed method was still very sensitive to noise which made
the VG values less reproducible than the vergence value.
We also identified a few other limitations of the proposed
method and our implementation:

IPD approximation.We compared the proposed method
with a vergence method that was not implemented using
gaze rays or vergence angle but measured by subtracting the
pupil positions of the left and the right eyes. This measure
that we referred to as IPD signal was not the actual IPD
measured in mm and was sensitive to the movements of
the headset relative to the head because it was measured
from two pupil positions obtained from two different image
sensors. This could potentially affect the depth estimation

result from the vergence method and perhaps explain the
higher error at a depth 7 m for this method (Figure 8).

Signal synchronization. We found the VG calculation
to be very sensitive to the synchronization issues between
the eye and the head signals. Although the eye and head
signals used in our study were both obtained from the Tobii
SDK, there were trials where the peaks of the two signals
were not synchronized and we have seen an offset of 1-4
frames.

Non-VOR eye movements. As we discussed in the sub-
jective evaluation, it was difficult for some people tomaintain
the gaze on the target during head shakes which resulted
in non-VOR eye movements to be mixed with the VOR eye
movements. This problem invalidates the key assumption of
the proposed method.

Head shifts. Head rotations are not always pure rota-
tions around an axis and are often combined with head shifts.
Head shifts create eye movements when the gaze is fixed on
a target and that affects the ratio between the eye and the
head rotations.

No continuous depth estimation. Compared to the ver-
gence based methods, the proposed method is not capable
of estimating the depth on a continuous basis as it relies on
VOR eye movements.

Future work could look at the effect of head shift as well as
the changes in the rotation axis of the head. Small variations
in these factors could be considered in the theory which
can later be taken into account when calculating the VOR
gain. This can potentially increase the depth estimation ac-
curacy using the proposed method. In the future work, we
would also study how the vergence method and the proposed
method could be used together to complement each other.

9 CONCLUSIONS
In summary, this work has proposed a novel technique for
depth estimation of the point of gaze in 3D which is based on
the VOR eye movements. A user study showed the possibil-
ity of using the proposed technique for resolving ambiguity
caused by the occlusion problem when target selection is
done by gaze and head gestures. We showed that our method
can achieve the same level of accuracy when compared to the
methods that are only based on vergence. We further demon-
strated that our method can be implemented by tracking
only a single eye without relying on any gaze calibration.
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