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Figure 1: Neural Bokeh enables coherent compositing of synthetic all-in-focus scene elements with photographs that facilitate
out-of-focus blur. (top) The photograph contains bokeh resulting from a rounded aperture, which varies with its position in image
space. Neural Bokeh can learn the appearance and spatial variation to apply them to virtual out-of-focus scene content (for example,
the Christmas tree and the decoration lights on the house). (bottom) The photograph contains bokeh with a heptagon shape, which
is generated by applying Neural Bokeh to the elements of the virtual scene to support coherent composition.

ABSTRACT

We present Neural Bokeh, a deep learning approach for synthesizing
convincing out-of-focus effects with applications in Mixed Reality
(MR) image and video compositing. Unlike existing approaches that
solely learn the amount of blur for out-of-focus areas, our approach
captures the overall characteristic of the bokeh to enable the seamless
integration of rendered scene content into real images, ensuring a
consistent lens blur over the resulting MR composition. Our method
learns spatially varying blur shapes, i.e., bokeh, from a dataset of real
images acquired using the physical camera that is used to capture
the photograph or video of the MR composition. Accordingly, those
learned blur shapes mimic the characteristics of the physical lens. As
the run-time and the resulting quality of Neural Bokeh increase with
the resolution of input images, we employ low-resolution images
for the MR view finding at runtime and high-resolution renderings
for compositing with high-resolution photographs or videos in an
offline process. We envision a variety of applications, including
visual enhancement of image and video compositing containing
creative utilization of out-of-focus effects.

*e-mail: mandl@icg.tugraz.at
†e-mail: kalkofen@icg.tugraz.at

1 INTRODUCTION

Three-dimensional (3D) compositing is an essential component in
visual effect productions, where the visual characteristics of ren-
dered and captured footage must be aligned. Precisely aligning the
rendering to the specific character of the camera footage requires
experienced visual effects specialists and involves complex soft-
ware suites, such as Foundry Nuke1 or Blackmagic Fusion2. Such
software tools rely on a time-consuming workflow to manipulate
rendering and composition.

Photo and video editing for social media, such as Snap Lens-
Studio, Adobe Premiere Rush, and Adobe Aero, are designed for
casual users seeking simplified image editing capabilities. However,
our objective extends beyond providing basic editing tools and aims
to support high-quality image compositions using Mixed Reality
(MR) at runtime (during view finding). In order to facilitate the
creation of high-quality image compositions by casual users, it is
imperative to establish a simple yet effective workflow that auto-
matically aligns rendering parameters. Recent research in the field
of automatic light and material estimation [28, 29, 36, 52], depth
estimation [3, 9], and camera simulation [22, 27] has enabled visu-
ally coherent renderings. However, despite the impressive results
of these approaches in representing scene elements that are close to
the focal plane, precisely and automatically mimicking out-of-focus

1https://www.foundry.com/products/nuke-family
2https://www.blackmagicdesign.com/products/fusion
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lens blur remains challenging.
In virtual environments, attainment of physically plausible de-

focus blur can be achieved by ray tracing [23]. However, when
incorporating actual camera footage and digital content into a 3D
composition, it becomes necessary to replicate the out-of-focus char-
acteristics of the physical system. These characteristics commonly
vary per lens, across the image sensor, with focus distance, and
based on the size and shape of the aperture. Consequently, casual
3D compositing often mixes all-in-focus (AIF) footage with AIF
rendering. By combining the two, an AIF composite is formed, al-
lowing for the application of arbitrary out-of-focus effects to virtual
and real scene elements. However, relying solely on AIF footage
precludes the use of blurry source materials and camera systems,
imposing undesired constraints on the creative process.

In this work, we propose Neural Bokeh, a deep learning approach
to automatically generate a coherent defocus blur in MR renderings.
The method is based on an end-to-end neural network for learning
an implicit model of a physical lens from images captured through
said lens. It is built upon the insight that the lens model can be
inherently characterized through a comprehensive image database,
readily available from the physical lens. Given the potentially large
number of parameters associated with the model, we opt to directly
learn its impact on the image, rather than the parameters, to explicitly
synthesize blur using techniques such as ray tracing.

The input to our system comprises an RGB photograph, accompa-
nied by its meta-data, which includes information about the aperture
size and focus distance, an object mask to account for occlusions,
and an AIF RGB-D rendering of virtual scene elements to be inserted
via 3D compositing. The blur shape is learned by concatenating
residual blocks with per-channel convolutions, gradually increasing
in size. The maximal size of these convolutions is identified based
on the range of depth and focus distance. To also learn spatially
varying blur shapes, we partition the input image into overlapping
tiles. These tiles are processed separately, but are evaluated in con-
junction during training to mitigate potential color discrepancies
between tiles.

Figure 1 demonstrates the effectiveness of Neural Bokeh on im-
ages captured with two different lenses (Figure 1, left). While the
bladed aperture of the Nikkor FX 28 mm lens is blurring out-of-
focus points to a characteristic heptagon pattern, the vignetting of
the Nikkor DX 35 mm lens is producing varying blur shapes across
the image. Elliptical blur shapes are more prominent near the border,
whereas circular shapes dominate near the center. Due to the fact that
our system has been trained with camera images from the physical
lens systems, it is capable of applying both effects to an AIF render-
ing of virtual scene elements (Figure 1 middle), thereby ensuring a
coherent blur across the MR composition (Figure 1, right).

Our approach is based on previous work on neural rendering
of camera effects in virtual reality (VR) and augmented reality
(AR) [27, 49], but with several crucial distinctions. Pure VR does
not require compositing and, therefore, does not necessitate a physi-
cal camera lens model. In contrast, AR does consider lens models,
but often trades the quality of its approximations for real-time per-
formance. Neural Bokeh, on the other hand, introduces the first
approach that aims to precisely replicate the out-of-focus blur of
a real lens. As runtime performance and the resulting quality of
Neural Bokeh are contingent on the resolution of the input image,
we provide low-resolution images for online Mixed Reality (MR)
view finding and high-resolution images and videos for high-quality
compositions computed on demand. Ultimately, our system’s ability
to automatically render 3D objects with the characteristics of a spe-
cific physical lens has the potential to make visual effects production
more accessible to casual users. In summary, we make the following
contributions:

• We present the design and prototype of a neural network tailored to
learning and reproducing spatially varying out-of-focus lens blur

with high precision. Our design incorporates several key features,
including (I) residual blocks with per-channel convolutions of
varying size, (II) an approach to optimizing the number of network
layers based on the maximal size of the circle of confusion (CoC),
and (III) image tiling with global optimization to facilitate the
learning of spatial variations while maintaining global consistency.

• We evaluate the efficacy of our neural rendering scheme by con-
ducting an ablation study and by comparing its results against
photographs and synthetic datasets with realistic out-of-focus blur
generated using time-consuming ray-tracing techniques.

• We demonstrate the practical benefits of learned lens blur for out-
of-focus composition through experiments conducted on several
learned physical lenses.

2 RELATED WORK

In optical imaging, DoF represents the region between the nearest
and furthest elements of a scene that appear to be visually sharp.
Given an optical system, the DoF can usually be determined by the
focal length, the distance from the subject, and the aperture [1, 4].
In photography and film production, the blur that is produced from
scene elements outside the DoF often has a specific character and
is, in this context, referred to as bokeh [26]. DoF and bokeh have
recently become features that even non-professional users desire for
artistic purposes. Expressive freedom is granted by the large variety
of blur effects caused by deviations in lens aberrations and aperture
shapes. This section reviews state-of-the-art approaches to rendering
the bokeh.

2.1 Rendering defocus blur
In the computer graphics community, researchers have established a
large body of physics-based rendering algorithms that can synthesize
natural-looking lens blur [25]. For example, physically plausible
DoF effects can be achieved by sampling through rendering or captur-
ing the aperture of the camera system using pinhole cameras [15,30].
While rendering and subsequently sampling many images is time-
consuming, several approaches address real-time bokeh rendering
via post-processing [19, 37, 38]. However, the performance gains of
these methods often come at the cost of visible artifacts [8].

High-quality rendering of lens effects can be achieved with dis-
tributed ray tracing [7], light field synthesis [16, 43], or focal stack
composition [17], which all tend to incur a high computational cost
due to dense sampling [10, 34]. Furthermore, artistic manipulation
of bokeh rendering requires more domain knowledge of optical aber-
rations [47] than can be expected from casual users. For a more
comprehensive review, we refer the reader to the literature [5].

Several attempts have been made to model aperture effects for
bokeh rendering [24] and other deblurring purposes [45]. A common
approach is to fit a model to a spatially varying effect observed via a
dedicated calibration board [18], typically a 2D dot grid or a chess-
board pattern [24], which requires long exposures in a dark room or
otherwise in a single defocus image [53]. However, these models
only approximate the optical behavior (e.g., assuming image-space
blur or planar scenes [45] and symmetric lenses [41]). In general,
complex optics and hard-to-model imperfections are neglected [21].
To address this issue, we train our network designed for mimicking
spatially varying bokeh shapes from given images or photographs.

2.2 Deep learning for synthesizing defocus blur
With the rise of deep learning for image synthesis [31, 51], learning
various DoF effects has been investigated as well. For example,
DeepFocus [49] generates convincing defocus blur for synthetic
scenes, but is primarily designed to approximate blur as it arises in
the human eye at real-time update rates for display in VR headsets.
It learns how blur depends on the depth and the circle of confusion



Figure 2: Overview. (a) Input to Neural Bokeh is an AIF image that is split into tiles and separated by R, G, and B channels and the circle of
confusion (CoC) map, which encodes the depth per pixel and the desired focus distance. (b) Tiles are processed in the network, using a series
of ResNet blocks with increasing kernel size. (c) The network outputs a list of blurred tiles, which are assembled into the output image and
composited with a photograph.

(CoC). Similarly, Neural Cameras [27] only learn the parameters of
a Gaussian mixture model, which enables fast rendering, but suffers
from a coarse approximation. Both approaches aim for interactivity,
but are not designed to accurately model the aperture shape and
spatially varying properties of artistic bokeh are required for realistic
bokeh.

DeepLens [44] trains the spatially varying blur kernels of a depth
map and an RGB input image in a pipeline consisting of a network
to segment foreground and background, a kernel prediction network
and a feature map extraction network. This pipeline delivers low-
resolution, shallow-DoF images, which can be upsampled to the
desired resolution via a post-processing network. Although powerful,
this pipeline is rather complex and does not address the need for an
end-to-end solution.

As an alternative to the above approaches for learning lens blur,
one can synthesize defocus blur via guided up-sampling and down-
sampling for varying convolution layers with different kernel sizes
and spatial resolutions [14]. This approach can generate convincing
out-of-focus blur, but it is limited by its convolutional approach
and lacks the characteristic round or bladed bokeh shapes that are
expected from aperture shapes in real photography.

Recent neural rendering techniques seek to reconstruct the ra-
diance of the scene as a function of 3D samples taken along the
rays [32, 33, 51]. Specifically, DoF-NeRF [48] aims to reconstruct
a CoC-dependent neural field trained per scene via a patch-based
sampling strategy. Alternatively, an unsupervised approach [20]
with a generative adversarial network can learn pairs of shallow
DoF and deep DoF images from noise. While the reported results
look convincing, these approaches assume a pinhole camera model,
making it challenging to integrate characteristics of real lenses. A
work developed concurrently with ours focuses on learning defocus
blur to synthetically vary camera aperture and focus distance [2].
This work uses information from a dual-camera system, whereas
ours is focusing on a more common monocular camera.

3 METHOD

The appearance of scene points outside the DoF depends on cam-
era properties and scene geometry, such as focal length of the lens,
distance to the object, aperture diameter, and scene depth [4]. How-
ever, camera design limitations, optical system imperfections, and
physical properties of light often make generating an explicit appear-
ance model difficult [24]. We develop an end-to-end neural renderer
which directly mimics the appearance of such out-of-focus scene
elements. Our approach is designed as a post-process to traditional
virtual scene rendering, so that it can be combined with any ren-
dering pipeline which supports combining real and virtual scene

elements.
In the following, we provide details on how our network supports

learning the blur shape for spatially varying effects. An overview of
the runtime system of Neural Bokeh is shown in Figure 2.

3.1 Learning local bokeh effects
Rendering defocus blur requires spreading the contribution of a
single point p in the scene onto several pixels in image space. Since
scattering can be more efficiently implemented by gathering [11], we
design a convolutional neural network that collects the contributions
of the pixels surrounding the projection of p depending on the
diameter c of the CoC, which is calculated as:

c =
wi

ws
·a ·ds

|dp −d f |
dp ·d f

, (1)

where wi is the image width in pixels, ws is the sensor width in mm,
a is the aperture diameter, ds is the distance between the lens and
sensor, dp is the distance to the point p, and d f is the distance to the
object plane of the lens.

We account for chromatic aberrations by following the idea of
Cholewiak et al. [6] of processing the color channels of each input
pixel separately, together with c, forming a four-channel vector for
each pixel as input to the network.

To efficiently learn the appearance, we reduce the number of input
parameters and thus fix the aperture size, the width of the camera
sensor, and the width of the image size, leading to different net-
works for different values of a, wi, and ws. From a combination of
those parameters, we compute the maximal size of the CoC, which
serves as a hyper-parameter for adjusting the number of convolu-
tions in the network. In particular, our network F consists of N
sequential residual blocks [12], denoted as Rn(·), consisting of two
per-channel convolutional layers with a kernel size of kn = 2n+1,
where 0 < n ≤ N, followed by a ReLU activation function. Addi-
tional convolutional layers C are placed before and after the residual
blocks for conversion into a three-channel tensor. Note that C has
a 1×1 kernel and does not contribute to bokeh effects. The color
channels are concatenated with the output tensor of RN via a skip
connection, followed by a tanh activation function,

F (x) = C2(RN(... R1(C1(x))...)⊕xRGB), (2)

where x is a tensor representing the concatenation of R, G, B, and
CoC per pixel, and ⊕ the channel-wise tensor concatenation. Here,
xRGB is a tensor with only the RGB components of the input vector.

Similarly to Xiao et al. [?], we use residual blocks to effectively
learn to blur the input while retaining the high-frequency content



located in focus. However, unlike previous approaches, we split the
input and introduce a maximum kernel size, kN , covering the largest
CoC in the supported depth range for a single aperture size. The
depth range is determined by the minimum and maximum depths in
the training dataset. Therefore, the largest kernel size depends on
the largest CoC in a given dataset.

3.2 Learning spatial variation
The network must also learn spatially varying blur shapes, because
lens vignetting commonly results in a varying blur across the field of
view of the camera. Therefore, we tile and aggregate an input image
into a tensor x, so that each tile has a different convolutional layer.
The tiling suppresses learning of global effects, but instead enforces
learning of tiled-area-dependent DoF effects. For that purpose, we
first divide the 4-channel input of AIF RGB and CoC images into
tiles with t × t pixels and to pixels overlap and then concatenate the
resulting Ntiles tiles along the channel dimension.

Thus, the aim of our network F : x → y is transforming the
t × t × 4Ntiles input tensor x into a t × t × 3Ntiles output tensor y.
The output tensor consists of a set of RGB image tiles with defocus
effects. In the final step, the image is reconstructed from tiles by
placing them in their original position. Pixels in overlapping areas
are blended by averaging the overlapping pixel colors to avoid visible
seams between tiles.

3.3 Training
The training data consists of AIF and corresponding defocus images
and CoC maps. To generate the data, we capture several defocus
images at each viewpoint of an AIF, each image with a different
focus distance. We use RAW images from the camera and convert
each pixel to floating point. These values are normalized to [-1,1].
The raw pixel values are mapped into a linear space and addition-
ally de-bayered using RawTherapee3. For each defocus image, we
compute its CoC map using the depth map retrieved from the AIF
image. While many approaches can be used to calculate per-pixel
depth information [42], we leverage a recent approach for multi-view
reconstruction based on AIF images of a single scene [39, 40].

For training the network, we pair an AIF image with the CoC
map of a corresponding defocus image to form the input x. The
error of a single training cycle is calculated by comparing the output
of the network F (x) with the ground truth defocus image ŷ which
corresponds to the CoC map in the input x. We optimize the net-
work using mean-square error (MSE) over the output F (x) and the
defocus image ŷ, i.e., we seek

argmin
W

MSE(F (x), ŷ), (3)

where W denotes the network weights of F .
While the network convolutions are independent between tiles,

a loss of the entire image is computed and back-propagated to ad-
just the convolutions of all tiles. This optimization scheme avoids
learning bias per tile, which would result in unbalanced colors on
different tiles in a single image. We use photographed focal stacks
rather than capturing randomly focused images, which lets us com-
pute the AIF images from the corresponding defocused photographs.
The training scheme is illustrated in Figure 3.

3.4 Compositing
When inserting synthetic objects into a real scene, we must ade-
quately blend them to create the illusion that both would have come
from the same camera. Therefore, we first render the synthetic scene
using a pinhole camera model with the same intrinsic parameters
as the real camera. To get the CoC map of the synthetic scene, we
use the depth buffer and camera parameters to compute the diameter

3http://www.rawtherapee.com

Figure 3: Training scheme. The network learns to simulate a specific
bokeh by processing pairs of an all-in-focus (AIF) image and a circle-
of-confusion (CoC) map into a defocused output image, which is
compared to the ground-truth defocused photograph that corresponds
to the CoC-map. AIF images are computed from captured focal stacks,
so that the ground-truth defocused photograph and a corresponding
AIF input image share the same viewpoint.

of the CoC for every pixel. Next, we use Neural Bokeh to blur
the scene according to the learned real camera lens. We render the
virtual objects on top of the real-world image to avoid an implausible
pixel color leakage of the surroundings after applying Neural Bokeh.

We compose real and virtual scenes using alpha compositing. As
a base mask image, we first render the objects of an unlit white
material onto a black image. We then employ an erosion and a
Gaussian filter to smooth the borders on this mask.

4 EVALUATION

We validate our network design choice selected among those in-
troduced by Neural Bokeh and compare our Neural Bokeh with
the state-of-the-art approaches to reproduce bokeh effects for AIF
images in both real and synthetic scenes. The datasets are available
on the project’s github repository 4.

4.1 Dataset
Evaluation by comparing photographed defocus blur with their syn-
thesized counterparts is affected by the noise in the captured images.
Since Neural Bokeh is based on HDR input the generated pixel
colors are also affected by th operator that is used for tone mapping.
Therefore, we created four synthetic datasets that simulate distinct
bokeh shapes (see the Input and Ground Truth rows in Figure 5 for
example renderings) for ablating the system components and for
an isolated comparison of generated bokeh shapes. To train and
test with images that are still close to real photographs, we render
images using the path-tracing capabilities of VRay 6 for 3ds Max5.
The dataset consists of rendered focal stacks and their corresponding
AIF and depth images. The focal stacks are used as ground truth,
while the AIF and depth images are used as input to the networks
for generating the focal stacks that are compared against the ground
truth renderings. In total, we render images from 15 viewpoints at
random locations in 15 virtual environments to ensure a broad cov-
erage of scene types. For each viewpoint, we render 10 differently
focused images at a size of 1920×1080 pixels, resulting in 2250
images per evaluation dataset. In the following, we use the resulting
data to validate our network design (Figure 4).

We also captured a similarly large dataset to learn the real lens
systems demonstrated throughout this paper. We captured 143 focal
stacks for Nikon Z6 and 138 for Nikon D3300. Each focal stack is

4https://immersive-technology-lab.github.io/projects/neuralbokeh
5https://www.chaos.com/vray/3ds-max
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Figure 4: Design Validation. We compare the ground truth (GT) (from left to right) with the result of our network (ours) and the results of our
network variants (a) using a 3×3 kernel size, (b) without tiling, (c) with tiling but without overlaps between tiles, (d) computing a loss for each tile
separately.

composed of 30 focal slices. We relied on this real dataset to draw
the quantitative and qualitative characteristics of our approach in
comparison to the related work (Figures 6 and Table 3). For both
real and synthetic datasets, we split the data into 80% training and
20% test data.

4.2 Design validation
To show the impact of our design choices, we validate each choice
by comparing the results with those achieved with its naı̈ve alterna-
tive. In particular, we validate the kernel size and tile sizes to learn
spatially varying bokeh shapes.

Convolutions. The ResNet blocks in Neural Bokeh use increas-
ing kernel sizes up to the size of the largest possible CoC. Since a
convolution could be represented by multiple smaller convolutions,
an alternative design would represent our kernels with a series of
smaller fixed-sized convolutions. The alternative can reduce train-
ing and inference time due to the reduced parameters per block.
However, fewer parameters can lead to inferior performance, and
performance compensation with more layers requires more memory
and longer inference. Also, our non-linear tanh activation functions
differ from conventional linear concatenations of small kernels.

To demonstrate the impact of our design choice, we train our
network with the same number of layers, but with 3×3 kernels,
and compare it with the results of increasing kernel sizes. One
additional layer of ResNet blocks with 3×3 kernels already exceeds
the memory consumption of Neural Bokeh.

Figure 4(a) shows renderings achieved in both conditions. From
the visual comparison, it can be seen that an increasing kernel size
(labeled ‘ours’ in Figure 4(a)) reproduces the shape of the bokeh well,
while the results achieved with the same network using 3×3 kernels
suffer from missing contrast and poor shape representation. This
observation is supported by the quantitative measurements shown in
the first and second rows of Table 1, which present mean values for
peak signal-to-noise ratio (PSNR) [13], structured similarity image
metric (SSIM) [46] and learned perceptual image patch similarity
(LPIPS) [50]. For example, while the network achieves a PSNR
of 42.0 dB when using increasing kernel sizes, its variant using a
3×3 kernel size achieves only 36.9 dB. Similar differences can be
observed for other measurements.

The images resulting from using constant 3×3 kernel size suffer
from a lack of contrast. The difference in the bokeh becomes even
more apparent. More network layers of 3×3 convolution kernels

Table 1: Performance measures of design variations. Mean values
have been computed from 4×15 test images of rendered data shown
in Figure 4 and Figure 5.

PSNR↑ SSIM↑ LPIPS↓
Neural Bokeh (ours) 42.0 0.981 0.017
3×3 kernel size, Fig. 4(a) 36.9 0.971 0.030
No tiling, Fig. 4(b) 35.3 0.964 0.035
Tiling w/o overlap, Fig. 4(c) 40.2 0.980 0.018
Loss per tile, Fig. 4(d) 38.1 0.979 0.022

may improve the results. However, our tests show that memory
consumption and inference time are already very similar between
both approaches, with 2920 MB vs. 2867 MB and 2.90 seconds
vs. 2.89 seconds for the increasing and 3×3 kernel size, respec-
tively (measured on a laptop computer with an Intel i9-8950HK at
2.90GHz using an externally connected mid-class graphics processor,
a GeForce RTX 2080). Table 2 shows that the overall performance
increases when using a more recent PC system; however, the dif-
ference between a variable and a constant kernel size with more
network layers is similar on both rendering systems. The perfor-
mance values shown in Table 2 were measured using a recent PC
system (Intel i7-12700 3.6 GHz, 128 GB Ram, Geforce RTX 4090),
for several resolutions and maximal CoC sizes (two max. CoC sizes
relate to real lens systems, Nikkor 28mm and Nikkor 35mm, and
one to a virtual camera learned for validating the design choices).

Image tiling. Our design supports image-space variations by
splitting the input image into tiles, which are processed separately.
The impact of our design decision is demonstrated in Figure 4(b).
The physically correct spatial variation of the circular bokeh appears
thick on the left, thin in the middle, and open on the right side of
the image. As can be seen in the insets, learning the bokeh for
each tile enables reproducing such spatial variations, while learning
the appearance over the entire image produces a uniformly shaped
bokeh, as demonstrated by the closed, round bokeh in Figure 4(b -
no tiling). In addition to the visual improvements, we can also see
an improvement in all measurements when learning the bokeh per
tile (see ‘No tiling’ vs. ‘Neural Bokeh’ in Table 1).

Although tiling improves the results, separation within the net-
work could potentially introduce color shifts over different tiles, and



Figure 5: Comparison on renderings. We compare the results of Neural Bokeh with ground truth renderings and photographs, and with results
achieved with NeuralCamera [27] and DeepFocus [49].

Table 2: Inference times (in ms) of Neural Bokeh using varying kernel
sizes.

Maximal diameter of the CoC 360p 720p 1080p 1440p

Small (50 pixel) 15.69 15.57 32.34 46.31
Medium (65 pixel) 31.25 31.20 31.24 47.21
Large (81 pixel) 31.33 38.35 157.5 251.3

the amount of color shifts depends on the color distribution in the
training dataset. To overcome this issue and balance the colors of
neighboring tiles, we introduce overlaps between tiles and compute
the training loss over the image instead of separately for each tile.
To validate our design, we compare our results to those obtained
using non-overlapping tiles and per tile loss. The tile size in all tests
was set to 200×200 pixels, and the additional overlap was set to 60
pixels on each side.

Figure 4(c - w/o overlap) and Figure 4(d - per tile loss) show
visible seams introduced by mismatching colors of neighboring tiles.
Computing the loss only per tile seems to have a stronger negative
impact. The tiling strategy without overlapping borders achieved a
PSNR of 40.2 dB, whereas overlapping tiles with only a local loss
per tile could reach only a PSNR of 38.1 dB (see ‘Tiling w/o overlap’
vs. ‘Loss per tile’ in Table 1).

4.3 Comparison to related work

To assess the performance of Neural Bokeh, we compare it with
current approaches. In particular, we trained the neural networks
proposed by Xiao et al. [49] and Mandl et al. [27] with the render-
ings we generated to validate our design (discussed in the previous

Table 3: Quantitative comparison with state-of-the-art approaches.

Ours [27] [49]

Heart bokeh
Fig. 5 (1st column)

PSNR↑ 42.1 26.7 29.4
SSIM↑ 0.983 0.912 0.919
LPIPS↓ 0.015 0.095 0.095

Circle bokeh
Fig. 5 (2nd column)

PSNR↑ 41.3 25.6 31.6
SSIM↑ 0.976 0.856 0.916
LPIPS↓ 0.020 0.107 0.103

Bladed bokeh
Fig. 5 (3rd column)

PSNR↑ 42.3 26.4 35.2
SSIM↑ 0.983 0.915 0.967
LPIPS↓ 0.016 0.091 0.031

Round bokeh
Fig. 5 (4th column)

PSNR↑ 42.3 26.0 35.2
SSIM↑ 0.982 0.912 0.972
LPIPS↓ 0.017 0.094 0.039

Nikon Z6
w/ Nikkor 35mm
Fig. 6 (top)

PSNR↑ 26.2 21.6 23.6
SSIM↑ 0.946 0.896 0.921
LPIPS↓ 0.057 0.083 0.068

Nikon D3300
w/ Nikkor 28mm
Fig. 6 (bottom)

PSNR↑ 31.2 28.7 29.7
SSIM↑ 0.944 0.920 0.932
LPIPS↓ 0.133 0.142 0.155

section) and with photographs captured with a Nikon Z6 camera
using a 35mm lens and a Nikon D3300 camera using a 28mm lens.

Evaluation on renderings. As shown in Figure 5 and Table 3,
Neural Bokeh is capable of producing high-quality out-of-focus
renderings preserving the specific bokeh characteristic. Figure 5



Figure 6: Comparison on photographs. We compare the results of Neural Bokeh with ground-truth photographs, with DeepFocus [49], and with
NeuralCamera [27] on two camera systems (Nikon Z6 - Nikkor DX 35mm, Nikon D3300 - Nikkor 28mm) and with two focus settings. In addition,
we show a squared error visualization in color to highlight erroneous pixels in each of the test cases. (left) Focus set to the front of the scene, i.e.
close to the camera. (right) Focus set to the middle of the scene.



Figure 7: Mixed Reality compositing. (a) Rendering for compositing a 3D animation. The rendered bokeh follows the bokeh present in the
photograph and, thus, coherently changes depending on its position in image space. In this example, Neural Bokeh introduces the cat-eye
bokeh present in the photograph to the rendering of the virtual scene (the carousel and the decoration lights on the carousel). (b) Rendering
for composing a focal stack. The focus distance differs between the image on the left, the image in the middle, and the image on the right. (c)
Our Mixed Reality viewfinder enables previews of the composition of captured images with out of focus rendered scene elements. The system
streams images from a camera, in this example, a Nikon D3300 with a detachable 28mm lens, to a PC, where it is augmented with renderings of
out-of-focus scene elements. The result is sent back to a smartphone for displaying the composition..

shows how closely Neural Bokeh is approximating the ground truth
rendering for all four bokeh shapes shown. Existing approaches
generate more uniform bokeh shapes, as seen in the differences in
bokeh shape reproducibility of the heart, ring, and bladed bokeh.
The other approaches can generate results similar to Neural Bokeh
on simple bokeh shapes (e.g., the rounded bokeh shown in the
rightmost column of Figure 5). Overall, all approaches learned depth-
dependent blur from the training dataset, and thus, they generated
bokeh at out-of-focus pixels and kept sharp pixels at in-focus pixels.
Notably, Neural Bokeh is the most useful when mimicking unusual
bokeh shapes.

Evaluation on photographs. To visually investigate the results
achieved by Neural Bokeh also on photographs, we have set up a
test scene that includes a set of LED lights, which we have placed
at several distances in front of the camera. This setup allows us
to explore and compare the quality of the bokeh simulation over
a certain depth range. Figure 6 shows the setup, the ground-truth
camera images of Nikon Z6 with Nikkor DX 35mm and Nikon
D3300 with Nikkor 28mm at two different focus distances, and the
results achieved by the approaches. The rendering achieved by each
approach is composited with an AIF image, which we computed by
capturing a focal stack of the test scene.

Table 3 additionally provides PSNR, SSIM, and LPIPS results,
which show that Neural Bokeh is capable of producing superior
results in comparison to recent state-of-the-art approaches. The
squared error visualization in Figure 6 also supports this. Overall,
we noticed that the measurements shown in Table 3 are consistent
between real and synthetic data but overall higher for synthetic
data. We believe the lower values are caused by camera noise and
other aberrations, such as highlights on the border, which Neural
Bokeh has not picked up. By investigating the error visualization
and the results in Table 3 together, we can further see that the 35mm
lens produced lower measurements and larger errors compared to
the 28mm lens. This demonstrates that the error depends on the
bokeh size, i.e., the larger the bokeh, the higher the measured error
becomes. This might also explain why the results achieved with the
NeuralCamera approach increase for the D3300 dataset compared
to the synthetic data, even though the camera introduces noise.

Neural Bokeh is capable of closely mimicking the shape of the
bokeh for both cameras and in both focus settings consistently at the

various distances of LEDs. Apparently, Neural Bokeh can generate
superior results compared to previous work [27, 49]. However, none
of the approaches correctly mimics the bright borders of the bokeh.
We noticed that these aberrations appear in a high-frequent and small
spatial extent. Thus, we will further investigate solutions to better
reproduce high-frequent effects.

5 APPLICATIONS

We developed Neural Bokeh to support casual photographers with
tools to produce composites of shallow DoF photographs and out-
of-focus rendering effects. It is agnostic regarding the actual content
of the composition, enabling several other relevant applications.

Composing videos. Throughout the tests, we found that Neu-
ral Bokeh is capable of generating temporally coherent renderings
and, therefore, supports processing a time series of images, such
as the composition of tracked video footage and 3D animations.
Figure 7(a) shows two frames of a 3D animation, which has been
composited with a photograph. The animation shows the synthetic
content of a rotating carousel with attached decoration lights that
rotate with the carousel. The blur characteristic between the two
frames shown in Figure 7(a) is temporally consistent. The bokeh of
the light B and B′ is consistent throughout the animation, while the
bokeh of the light A and A′ changes from a round shape to an oval
shape. This change occurs because A′ is located close to the image
corner, where the bokeh becomes more distorted. This example
shows that Neural Bokeh is capable of learning spatially varying the
lens characteristics across the image. See the accompanying video
for further results of temporal composites.

Mixed Reality viewfinder. Neural Bokeh is capable of generat-
ing high-quality bokeh effects. However, its runtime scales with the
image resolution and depth range of the camera (i.e., the maximal
size of the CoC, as it impacts the number of ResNet blocks in the
network). See Table 2 for details of the runtime performance of Neu-
ral Bokeh on a recent PC system. To introduce an MR viewfinder
that performs at real-time update rates, we stream the preview of the
camera to the PC system and the resulting composition back to a
smartphone. The phone is mounted on the camera so that the display
of the composition follows any camera movements. Figure 7(c)
shows our example implementation using a Nikon camera for pre-



Figure 8: Applying bokeh characteristics to AIF images. Neural Bokeh enables several application cases in addition to post-processing an
AIF rendering to align the appearance of virtual objects in out-of-focus areas with a single photograph that shows a shallow DoF. Results of
applying the bokeh of a specific learned lens system to an AIF image captured with an arbitrary lens system. The AIF images are part of a public
database [14]. The upper row shows the characteristic bladed bokeh of the learned Nikkor 28mm lens, and the cat-eye bokeh which has been
learned from images taken with the Nikkor 35mm lens is shown in the lower row. Depth estimation errors (orange highlight) cause wrongly blurred
pixels, since the bokeh effect is directly affected by the depth.

view and image capturing and a Samsung Galaxy S9 to display the
resulting composition rendered on a nearby PC system.

Streaming the preview of a high-quality camera system to a PC
and the result to the display of a smartphone enables us to observe
the composition while investigating potential view points. Once
an appropriate camera view or camera path has been identified,
the photographer can capture high-resolution image data that will
subsequently be composited with high-resolution renderings of the
virtual scene that is shown on the smartphone.

Composing focal stacks. Support for temporal coherency is
also required for compositing photographed focal stacks and videos.
A popular use case of focal stacks is refocusing to keep moving
scene elements in focus or to guide the user’s attention in a video
composition towards a certain scene object. Figure 7(b) shows
three images of a focal stack composite that have been generated
using Neural Bokeh. The virtual scene consists of several butterflies
which have been composited to a captured focal stack. Neural
Bokeh believably simulates the blur present in the photograph so
that the characteristic bokeh appears in the renderings of the virtual
butterflies. The smooth bokeh in the image on the left becomes
harder in the image in the middle. The image on the right is focused
on the background of the scene, revealing the black butterflies with
the white spots in the background of the scene. Neural Bokeh
enables smooth changes to the focus distance in a video. However,
the smoothness of the transition depends on the number of images
in the captured focal stack. To increase the number of images in a
focal stack, we can generate an AIF image and a depth map from the
focal stack and use Neural Bokeh to generate a larger focal stack.

Transferring lens characteristics to AIF images. Neural
Bokeh can apply learned out-of-focus blur to AIF input images.
A specific use case applies the unique bokeh of rare or expensive
lenses to images taken by a camera without such lenses. Applying
learned bokeh of rare lenses can significantly reduce the costs of
movie or print productions that would otherwise require hard-to-find
optical components to obtain a unique look. In fact, given one-time
access to capture training data, Neural Bokeh can be used to preserve
the bokeh characteristics of historic lenses.

Figure 8 show examples of the learned bokeh used in Figure 1
applied to AIF images. The rendering in the upper row of Figure 8
shows the characteristic bladed bokeh of the Nikor 28mm lens,
while the renderings in the lower row shows the cat-eye bokeh that

is learned from the data captured with the Nikor 35mm lens. Since
Neural Bokeh requires per-pixel depth information, we use Ranftl et
al. [35] to derive the depth map from an AIF image before rendering
the bokeh. While recent monocular depth estimators are capable
of generating high-quality depth maps, depth estimation of small
structures is still challenging, which may causes wrong depth values
in such areas in an image. Figure 8 highlights such a case (see the
organge circle) and demonstrates how errors in depth estimation
causes errors in CoC calculation, which lead to a wrong blur in such
areas. Therefore, high quality depth estimation is a key factor for a
high-quality transfer of lens characteristics to AIF images.

6 CONCLUSION AND FUTURE WORK

This work introduces Neural Bokeh, an approach to learning the
bokeh appearance of physical lenses. Contrary to existing ap-
proaches that focus mainly on learning the amount of blur, our
approach produces more realistic bokeh characteristics in out-of-
focus renderings, including effects caused by aperture shapes and
spatial variations from lens distortion.

We validate our design decisions and demonstrate the superiority
of our approach over state-of-the-art methods in datasets from both
synthetic and physical cameras. Neural Bokeh has significance
for multiple areas in computational photography and videography,
in particular when composing AIF content from renderings. This
capability can be crucial when simulating large aperture effects in
mobile phone photography, where small sensors and small apertures
are common. Since Neural Bokeh is temporally coherent, it has large
potential in video compositing applications, which require video
sequences or 3D content from different sources to be coherently
rendered whilst supporting physically correct out-of-focus effects.

Apart from a general optimization for mobile devices, future work
may explore the simulation of additional lens characteristics (e.g.,
from anamorphic optics that introduce characteristic lens flare). In
addition, we consider depth estimation from out-of-focus objects
an interesting direction for future work. We believe that having a
system that is able to simulate a specific lens blur can be beneficial
in estimating the depth of points that fall outside the depth of field.
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